

03/10/2007 1/28

How to define Entities

The last 15 years, methodologies promoted Process modelling reducing importance of Entity
definitions. To day it is more and more recognized that definition of Entities is the first step to define an
Enterprise System, even if Process Approach brings high value.

1 Abstract ... 3
2 Objectives ... 5

2.1 Entities must be defined for clear requirements ... 5
2.2 Entities must be defined for mutualisation ... 5
2.3 Entities must be defined for a good software structure .. 5

3 Which common Attributes for Entities? .. 6
3.1 Identifiers .. 6
3.2 Versions .. 6
3.3 Tracking information .. 7
3.4 Status ... 7

4 Approach to define Entities .. 9
4.1 Group level definition or local definitions? ... 9
4.2 Find main Entity Domains ... 10
4.3 Look for existing Glossaries .. 10

4.3.1 Look for an internal Business Glossary ... 10
4.3.2 Look for an external Business Glossary .. 11

4.4 Progressively build the Entity Model: links between Entities .. 11
4.4.1 Inheritance: “is” ... 11
4.4.2 Relation: “has” ... 11

4.5 Understand and reuse the business patterns: Descriptor, Operation and Stock 11
4.5.1 Descriptor .. 12
4.5.2 Operation .. 12
4.5.3 Stock ... 12
4.5.4 Multi Execution Process .. 12

5 Thumb Rules ... 13
5.1 Entities or data model? ... 13
5.2 Start defining static Entities then go to more dynamic Entities ... 13
5.3 Define owner relations: tightly coupled Entities ... 13
5.4 Prefer relations between instances of the same Entities rather than building new Entities 13
5.5 Prefer a multi-status Entity rather than N Entities .. 14
5.6 Provide identifier for each Entity .. 15
5.7 Start with concrete Entities before abstract Entities ... 15
5.8 For international definitions, reuse same Entities .. 16
5.9 Start with Parent Entity before Child Entity .. 16
5.10 Manage Synonyms (customer/client, contract/policy, ...) ... 17
5.11 Manage Homonyms .. 18
5.12 Do not mix inheritance (« is ») and relation (« has ») .. 19
5.13 Define relations with «creation process» ... 20
5.14 Do not mix Entities and Business rules ... 21
5.15 Split containers and contents .. 21
5.16 Check that existing data find a place in the new Entity Model ... 22

6 How to transform Entities into the right Classes ... 23
6.1 Transform relations carrying information into attributes or classes .. 23
6.2 Be careful not to be too generic .. 23
6.3 If a Class becomes too large, split into several Classes .. 24
6.4 Class model .. 25
6.5 Define precise Relations ... 25
6.6 How to implement a Role? .. 25
6.7 Prefer several Classes rather then different Perspectives of the same Entity 26

03/10/2007 2/28

7 Approach to help Business Analysts and IT Developers to reuse the Entity Model 27

03/10/2007 3/28

1 Abstract
Why define Entities?
Entities must be defined for clear requirements: it is obvious that to define Business Processes like
“Create a Person” or “Subscribe a Contract” the first step must be to define the Entities “Person” or
“Contract”, and the most common words are the most difficult to define because they generally represent
different Entities depending on who use the word.
Entities must be defined for Mutualisation: share Processes, share Products, share Data, share
Exchanges or share Software Services, means sharing a common language.
But definition of Entities is is also a necessity to build a good software.
Each Enterprise System includes thousands of Attributes and Business Rules.
A clean structure of Entities is the best way to classify these Attributes and Business Rules.

Which common Attributes for Entities
Any Entity must have

 An Identifier which identify each instance of the same Entity: be careful to choose invariant
identifier

 A Version to make a distinction between the different image of the same instance across time

 Who and When for last image

 Status which is linked to life cycle

Approach to define Entities
Define Enterprise scope: definition at Group level, company level or lower level?
Define Entity Domains: Actors, Products, Contracts, Organization,
Look for existing Glossaries: internal or external glossaries (from inter professional initiative or package
provider)
Define links between Entities: relation (“has”) and inheritance (“is”). Progressively build the Entity Model:
Entities are defined altogether.
Define Descriptors: Entities with simple life cycle (like Person, Address, Organization, …), also called
referentials
Define Operations: Entities which represent Inputs (they must be prepared then executed).
Define Multi Execution Processes: Entities with complex life cycle which represent the more complex
activity of the Enterprise

Thumb rules to define Entities
Do not detail the data model before having built a complete Entity Model.
Start defining Static data (referential data like Actors, Organization, Products), then go to more dynamic
data.
Define owner relations.
Prefer relations between instances of the same Entities rather than building new Entities.
Prefer a multi-status Entity rather than N Entities
Provide identifier for each Entity
Start with concrete Entities before abstract Entities
For international definitions, reuse same Entities
Start with Parent Entity before Child Entity
Manage Synonyms (customer/client, contract/policy, ...)
Manage Homonyms
Do not mix inheritance (« is ») and relation (« has »)
Define relations with «creation process»
Do not mix Entities and Business rules
Split containers and contents
Check that existing data find a place in the new Entity Model

How to transform Entities into the right Classes

03/10/2007 4/28

Once defined, Entities can be implemented with or without Object Oriented tools which allow to benefit
from mechanisms like inheritance.
The same Entity can be implemented with several Classes. Example: the Entity “Order” is
implemented with the Class “Order header” and the Class “Order Line”. The Class “Order Line” is owned
by the Class “Order Header”. It means that Entities and Classes are not he same: how to go from
Entities to Classes?
Transform relations carrying information into attributes or classes
Be careful not to be too generic : when an Entity is difficult to analyze, one easy solution is to define a
very general Entity and give it many different meanings, like a list of “Person+ the Role they play”. Try to
be pore precise at design time to avoid useless complexity for Developers who use the Entity.
If a Class becomes too large, split into several Classes.
Build and certify the Class Model which presents Entities with relations and inheritance links.
Define precise Relations.
Implement a Role as a Class or an Attribute.
Prefer several Classes rather then different Perspectives of the same Entity

Approach to help Business Analysts and IT Developers to reuse the Entity Model
Provide an Entity Model (definitions, relations, inheritances, identifiers, Life Cycle and Versioning)
before providing a detailed Data Model.
Do not communicate the Semantic Model to Business Analysts and IT Developers.
Propose Services: training, coaching, and certification.
Propose a tool to help Business Analysts and Developers to search for Entity definitions, and
administrate them.

03/10/2007 5/28

2 Objectives

2.1 Entities must be defined for clear requirements
Most of our sentences are structured the same way: Subject + Verb + Object.
Example: the Salesman Sells an Insurance Contract.

When Business Analysts describe the activity which they want to computerize, they use the same
common language: the only difference is that they prefer

 the word “Actor” instead of subject (for “Salesman”)

 the word “Business Entity” instead of Object (for “Contract”)

 the word “Process” or “Activity” instead of Verb + Business Entity (for “Sells a Contract”)

So the question is: how to define Actors, Processes and Entities?
Our recommendation is to define them the reverse order:
1-define the Entities
2-define the Processes
3-define the Actors and who does what

Why to define the Entities before Processes?
It is obvious that to define Business Processes like “Create a Person” or “Subscribe a Contract” the first
step must be to define the Entities “Person” or “Contract”. But the most common words are the most
difficult to define because they generally represent different Entities depending on who use the word

Why to define Actors after Processes?
We suggest defining requirements in 2 phases:

 first define “Business Processes” which represent the “what” must be done,

 then define who does what: for the same Business Process, many scenarios with different
combinations of Actors can be described. Each of them is called an “Organization Process”.

For example the Business Process “Subscribe a Contract” may have several Organization Processes:

 the Salesman Subscribes the Contract (on his desktop, or laptop)

 the Customer Subscribes the Contract (on Internet)

2.2 Entities must be defined for mutualisation
More and more Enterprises are willing to Mutualize at different levels: share Processes, share Products,
share Data, share Exchanges between the different IT Blocks, or share Software Services.
It will be impossible to share if there is no common definition of the Entities involved in this sharing.

2.3 Entities must be defined for a good software structure
An Entity represents an Object of the real world.
An Entity has an identifier which allows to recognize the different instances of the same Entity.
Good example: a Person, an Account, a Product, a Contract, an Address, …
Bad example: a Report, a Window, …
For each Entity a clear definition must be written, as explained.
But definition of Entities is a necessity not only to use a clear language, it is also a necessity to build a
good software.
Each Enterprise System includes thousands of Attributes and Business Rules.
A clean structure of Entities is the best way to classify these Attributes and Business Rules.
When the definition is clear, we generally create one Class for each kind of Entity: a Class is a piece of software
which mainly contains Data (called Attributes) and rules (called “Methods”) of the Entity.

03/10/2007 6/28

3 Which common Attributes for Entities?
Each Entity owns its attributes, but some Attributes are always present for each Entity:

 Identifier

 Version

 Who and Where

 Status

3.1 Identifiers
The main characteristics of identifiers are:

 Do not mix different instances of the same class: the simplest solution is to increment a number by
one at each instance creation.
 But what if a salesman creates instances of Contract on his laptop if it is not connected:

number slices or use laptop id as identifier header?
 But what if an instance changes: how to address the right version number

 Internal Id = name space + order
 Name space = who generates the order: generally it is an Organization Unit or a System

 Ex: the mainframe of a company

 Ex: the WS (including laptop)

 Ex: the server of a country
 Order: +1 for each new id (do not reuse an id even if instance is deleted)

 Most of Entity instances are updated several times during their life cycle . To identify an image of an
Instance at a given time, the identifier is not sufficient: we must add a version number. For each
update, the version number is incremented and the begin date is kept. Each image is then accessible
by version number or by date. Rules must be defined for each Entity to describe which versions are
kept alive in the Enterprise System.

 All relations must be done through this identifier. Version is or is not present depending on the
context.
 Sometimes, we prefer to access the last version. Ex: last version of the Address
 Sometimes we prefer to access a given version. Ex: version of a contract (by number or by

date)

 Access key: when the identifier is not known, the Object must be accessible by other ways which
generally are some values of attributes, called “access keys”. Ex: access to a Person by name, first
name and birth date

 Specific identifier: for some Entities, already exists an identifier which must be reused. We advice
to keep the internal id to benefit from all common services, and to add the specific identifier as
another key

 Internal ID or Partner ID?
 For broker AON, 3 ID are kept: technical ID, Shared ID and External ID (for AXA, AGF, …)

 Name: most of the Entities have a Name (name of a Person, a Legal entity, a Product…), which is a
string that the users remember better than identifiers. Instances can be found by name; if homonyms,
selection must be done with other complement data of the instance.

3.2 Versions
An Entity changes during its lifetime.
This is why we advice to add the version to the identifier.
Version is incremented by one at each update.
Rules must be established to define which versions are kept in the system or delete or archived, like:

 Keep all versions

 Keep all versions for a given period (all the versions from last year)

 Keep all versions on first of month

 Ask the user to determine if he wants or not to keep the last version for each update

03/10/2007 7/28

 …. and many other strategies
Versioning solves the history problem for any instance.

3.3 Tracking information
For each version, keep track of:

 Who is responsible for last update

 When was it done

 (“where” is not required)

3.4 Status
One of the most important Attribute of an Entity is its Status because it explains where the Entity is in its
Life cycle.
Each Entity has a life cycle. To summarize what was defined above:
We define simple life cycle for following Entities

 Descriptor (like Person, Address, Organization, …) : create, modify, delete, archive

 Stock (like Account, inventory): create, modify, delete, archive + debit + credit + explain balance

 Operation (like “modify Address”, “create a customer”, “Transfer money”: create, suspend, modify,
authorize, execute, delete, archive

Some specific Complex life cycle exist for more complex Entities like: Loan in a Bank, Claim in an
Insurance Company, or software update for all (we called them Multi Execution entities because they
require several Executions during its life cycle).

To explain ow Status and Life Cycle are linked, let‟s take the example of the “Stock Order” life cycle. The
successive Functions of the Process are:

 capture data,

 check order validity,

 authorize operation,

 send to Broker,

 update portfolio and accounts,

 delete and archive

For each Function of the Life Cycle, a status is updated.

 captured,

 checked

 authorized

 sent to broker

 executed

 accounted

 archived

03/10/2007 8/28

Page 25

Status and life cycle: stock order Process example

Capture Data

Functions Status

Check order validity

Authorize order

Send to Broker

Update portfolio

and account

Receive cotation

Delete and Archive

Captured

Checked

Authorized

Sent to broker

Executed

Accounted

Archived

Values for Status
To simplify language between Business Analysts and Developers, we must try to standardize the
common values of status like

 Created but not in force

 Valid

 Suspended

 Deleted

 Executed

 Archived
Then add specific status values for each Entity.
Ex: for the Entity “Prospect” add values : “identified”, “identified and contact done”, “interested”,
“cancelled”

03/10/2007 9/28

4 Approach to define Entities
Every designer generally thinks that he is able to design a good Business Entity Model, while it certainly
is one of the most difficult tasks which requires a lot of experience.
CEISAR suggest that, for the first times, the designers should ask for help: find real experts, copy
existing models and improve them, ask model experts to certify the quality of the Entity model and reach
a high level in modeling.
Defining words is a very difficult task. People who write dictionaries know that.

 A definition must be unambiguous: based on the talent of the writer, and on the quality of the other
definitions

 A definition must be associated to an example

 A dictionary is better managed by a single person, even if many contribute.

 A definition must be as short as possible as long as it is understood

 As definitions reuse words already defined, it is sometimes necessary to update the definition of an
already defined word: it is an iterative process

 Reuse already existing definitions, do not reinvent new terms

 Agree on Entities, and allow different synonyms

Page 13

Define Entity domains
1. For Business Entities: Product, Client, Contract, Account, Business Service

2. For Organization Entities: Organization, Actor, Right, Duty

Look for Glossaries
•Internal: glossary exists, or look at customer documentation

•External: inter professional definitions, Package definitions

Define Descriptors
•Concrete then Abstract

•Owner relation

•Life Cycle: prospect/client

•Dissociate Container and Contents

Define Operations
•Simulate creation process to identify hidden Entities (and iterate with descriptors)

•Manage Synonyms like Customer/client

•Manage Homonyms like “Service”

•Define identifier+ version

Approach Summary to build an Entity Model

Group Level

then

Company Level

Define Multi Executions Processes
•And check which Entities are required for each execution

Ask for

Certification

Data Model will come later

To help you to start, find below some practical rules, based on experience, starting with rules on
“Entities”, then rules on “Business Classes”.

4.1 Group level definition or local definitions?
If the Group wants to share

 Data (like customer file or Business Intelligence data)

 Ideas (and even solutions) on good Products or good Processes

 Software Blocks

 Software Services
then, it is better to have defined a common glossary for Entities. Group level will be less detailed than
Company level which reuses Group definitions and add complements like for Russian dolls.

03/10/2007
10/28

But, be careful not to grow too much the Group Model which will be reused by each company of the
Group: if it is too complex, companies will not reuse it.
Use an iterative approach to refine the Model in successive versions. It allows everyone to improve the
common Model.

 Do the work at different levels:

 Maintaining this Entity Model is the role of the Business Architecture team.

4.2 Find main Entity Domains
Simply describe the activity of the Enterprise and give a definition to all important nouns.

 Who is the Customer

 What is the Product (goods and services) offered to the customer

 With what Resources: people, machines, organization, location

 What is necessary to Sell: contract, distributor

 What is necessary to Deliver the product or service: Beneficiary, Provider, Delivered Service
Start with Business Entities, then define Organization Entities.

Page 28

Resource

Domain

Define Entity Domains

Product

domain

Contract

domain

Delivered

Service domain

Business Actor

Domain

Organization

Domain Accounting domain

Bus.Intelligence domain

Input domain

Output domain

Product

domain

Contract

domain

Delivered

Service domain

Bill, Payment Domain

Sales and Marketing: campaign, contact

Regulatory Domain

HR Domain
Commission

Org. Actor

Domain

Right/Duty

IT Domain

4.3 Look for existing Glossaries

4.3.1 Look for an internal Business Glossary

The first place to look for glossary is the company itself. But it is very disappointing to notice that very
few companies have formalized what is a Customer, a Product, a Contract or a Service.
Another way to understand the language used in the company is to:

 read documents defining products or processes and try to extract the definitions

 analyse input and output documents to look for complementary entities : customer documentation
(marketing, contract, …), partner documentation

 talk to business people and IT people in charge of related domains

03/10/2007
11/28

4.3.2 Look for an external Business Glossary

Other sources may come from:

 inter-professional organizations: to exchange with their members, they are using a language
which is understood by all, like EDI definitions,
 Example for Pharmaceutical Industry different organizations have defined a language: Efpia

(Business Europe), Leem (Business France), Cedhys (IT France), EdiPharm (EDI France)
 SCORE for supply chain
 OAG for manufacturing

 Application package providers: their documentation define the Entities

 Technology providers like IBM

 APICS for industry, supply chain
Many Standards exist today, not always very consistent between them.
To help you, CEISAR has defined a first list of Entities, as an example.

4.4 Progressively build the Entity Model: links between Entities
The textual definition of an Entity reuses other Entities.
Example: “The Contract is the formalization of an agreement when a Legal Entity sells a Product to a
Subscriber”, means that a Contract has links with other Entities: Legal entity, Product and Subscriber.
Formalization of these links will help to build definitions. Two kinds of links are useful: inheritance and
relation.

4.4.1 Inheritance: “is”

Class B inherits from class A when it is a specialization of Class A.
Class A is the Parent Class. Class B is the Child class.
Example:

 a “Life insurance policy” inherits from an “Insurance Policy”,

 a “Term Life policy” inherits from a “Life insurance policy”, which means that inheritance is a
hierarchy.

Inheritance helps reuse the common part of a policy: a child class benefits from the data and rules of its
parent, grandparent, great-grandparent, classes.
Use inheritance when you can use “is” as a verb between classes (such as a Term Life Policy is a
specialization of a Life Insurance Policy).
One of the most powerful features of inheritance is that when class A evolves, modifications are
automatically applied to inherited class B, which is not the case with simple cut and paste.
Another powerful feature is polymorphism in which an entity can manipulate an instance by invoking
methods of its parent class without any knowledge of the specialized class.

4.4.2 Relation: “has”

A Person has an Address. A Customer has contracts. An Account has Account Lines.
Each of them is called “Relation”.

4.5 Understand and reuse the business patterns: Descriptor,
Operation and Stock

Each Entity is unique. But they can be grouped by behaviour or life cycle.
We generally define 3 basic behaviours: Descriptor, Operation, Stock, the others being called “multi
execution Process”.
It is sufficient to define that a Person is a Descriptor to implicitly mean that we need Processes like:

 “Create a Person”

 “Delete a Person”

 “Modify a Person”

 “Search a Person by identifier”

03/10/2007
12/28

This is a good way to simplify requirements.

4.5.1 Descriptor

A Descriptor is a Entity whose Life Cycle is simple: create, modify (a new version), interrogate, and
delete.
Some call it “Static Entity”.
Ex: “Person”, “Address”, “Organization Unit”, …
Many Entities behave this way like: Person, Legal Entity, Organisation Unit, Address …
When you define the Entity “Person” as a Descriptor, there is no need to redefine its life cycle: just add to
standard Descriptor Data (like id, version, by who and when it was updated) the specific Data.
Descriptors may be reused by different Processes.

4.5.2 Operation

An Operation is an Entity whose Life cycle is different.
Some call it “Dynamic Entity”, or “Input”, or “Event”.
Ex: “Change Address”, “Order”, “Transfer Money”
An Operation is prepared in one or several tasks by one or successive application users.
When an Operation is executable (validity of data and authorized), it can be executed, which means that
the irreversible actions like updates to other objects can be performed. An operation can be executed
just once. After being executed, the operation can be kept persistent or archived, but is never modified.
The main difference with Descriptor is “Execute” which represents the set of irreversible actions of the
operation.
Example: money transfer.
You create a money transfer, you can suspend it because you lack the account number, or you need
someone else to authorize it. But at the end, either you abandon the money transfer or you Execute it
which means that you transfer the money, update the account and print an order copy. After Executing
the Operation you cannot change it anymore: you can only keep it persistent in the system to let people
interrogate the operation until you decide to delete and archive it.

4.5.3 Stock

A Stock “is” (which means “inheritance”) a specialization of a Descriptor which has a balance and has
relations with Operations which updated the Balance.
Example: the Entity “Account” is a Stock. Its balance is credited or debited each time there is an
accounting operation. Idem with Inventory.

4.5.4 Multi Execution Process

Some Entities have a more complex life cycle.
For example a “Loan Contract” requires to be executed several times, which means that there exist
successive irreversible actions like:

 Record customer request and get all required papers

 Get approval from Bank management

 Get approval from customer

 Put the loan contract in place at the right date
Each time the Loan Entity is executed, it changes its Status.
These Multi Execution Processes are better managed through workflow engines

03/10/2007
13/28

5 Thumb Rules

5.1 Entities or data model?
Classical methodologies insist on describing independently data and rules.
“data” generally means Entity definition, tables, their attributes, and relations between tables.
We suggest to improve this classical way by 2 principles:

 Use inheritance (see above)

 Define Entities before detailing data inside.

 Do not try to centralize detailed data definitions at Group level: if you propose a super set of the
different data which could be useful, it means that you will produce huge quantity of information that
scares people. They do prefer to be helped on getting well structured Empty boxes, and fill them by
themselves with the data they require.

5.2 Start defining static Entities then go to more dynamic Entities
This rule comes back to: first define Descriptors and Stocks, then Operations (mono execution process)
and Multi Execution Processes.
In some Organizations, Entities which are not often updated but often read are called “Referential Data”.
They generally include: Actor, Organization and Product.
As these Entities are reused by many others, they generally are defined first, which is easy for Actor and
Organization, but not so easy for Products: we advise to define Product together with Contract and
Services because they must keep consistent.

5.3 Define owner relations: tightly coupled Entities
An instance of a dependent Entity cannot exist if it is not linked to an instance of the owner Entity (in
UML we use the “aggregation” word).
Example:

Owner Entity Dependent Entity

Legal Entity Address

Person Medical Status

The rule should be

 Find owner Entity

 Find relations between owner Entities

 Add dependent Entities

Start with Entities which are not related to other Entities
Ex: do not define “Address” which cannot exist by itself; start defining Person, Legal entity, then define
Address which will be related to Person or Legal Entity.

5.4 Prefer relations between instances of the same Entities rather
than building new Entities

If your Organization is built with different levels like “Direction”, “Department”, “Division”, “Region”,
“Branch”, do not create as many Entities as there are levels: just create one Entity called “Organization
Unit” which has an attribute “Level of an organization unit”, and create relations between these
Organization Units.
Same thing if you want to describe premises. One Entity “Location”, and one attribute “level of the
Location” which can get values like “country”, “region”, “campus”, “building”, “story”, “room”.

Other example: a Material composed of Materials.

03/10/2007
14/28

Organization, Premises, Materials, “Urbanism” Blocks are hierarchical structures; they are generally
represented with the following model:

#

Unit

Composite

Unit

Single

Unit

Some other internal relations are not hierarchical like:

 a Person related to other persons (family relations)

 a Legal entity related to other Legal entities (ownership relations)

5.5 Prefer a multi-status Entity rather than N Entities
A Proposal is the same Entity than the Contract. It is better to define the Entity contract and a status
which indicates “proposed”, “subscribed”, “suspended”, “cancelled” …
Same thing with “Prospect” and “Customer”. The Entity is Customer, the status is “has no active
contract”, “has active contract”, “had active contracts”. This solution is better because it solves the
ambiguity when asking questions like “How many Customers”, must we include old Customers,
Prospects?

03/10/2007
15/28

Page 14

Avoid multiple Entities

Prospect

Active

Customer

Old

Customer

Contract Customer Contract

Quote

Proposal

Active

Contract

Old

Contract

Contract

Contract Status=

Proposed, Active, Dead

5.6 Provide identifier for each Entity
 Define an identifier which does not mean anything, so that it can be kept during all the life cycle.

Significant identifiers make problems like:
o Account number with branch id: what if a customer changes its Branch?
o Car with department number or State id: what if a car is sold and changes department or

state?
 Include versioning:

o with dates
o with tracking information
o with cleaning rules (which versions must be kept)

 Define which IT Resource generates the id: generally called “name space” (Ex: Server id or Laptop
id). Example: non connected laptop used by sales people allow to generate definitive Contract
Identifier because identifier includes the Laptop id.

5.7 Start with concrete Entities before abstract Entities
Start with concrete Entities which are easy to define like a Person, a Contract (there is a signed
document), an Address, an Employee…
Then define abstract Entities like Third Party, Resource, Actor …

03/10/2007
16/28

Page 15

Concrete before Abstract

Person

Contract

Product

Resource

Actor

Organization

Third party

Address

Employee

IT User

Business

Service

IT

Service

Business

Process

5.8 For international definitions, reuse same Entities
Each Enterprise in each country thinks it is specific and requires specific Entity definitions.
But cultures, products and processes get closer and closer.
We suggest to reuse same Entities and to implement specificities through different data and rules in
same Entities.
Define Entities for one country, validate first version of the model with another country and progressively
improve the common model.

5.9 Start with Parent Entity before Child Entity
A Child Entity is defined from the Parent Entity. Ex:

 First define a general Contract as an agreement between a company and a customer. Attribute
examples: id, date of subscription and subscribed Product

 Then define its child: an Insurance contract is a Contract where the Company is an Insurer.
Attribute examples: what is in Contract + the insurance agent who sold the contract

 Then define a Life insurance Contract as an Insurance Contract for a life product. Attribute
examples: what is in the Insurance Contract + the coverage amount.

03/10/2007
17/28

Page 16

Contract

Insurance

Contract

Life

Insurance

Contract

Parent before Child

5.10 Manage Synonyms (customer/client, contract/policy, ...)
It is much more difficult to have few Entities than many Entities. Finding that an Entity looks like
another one requires a lot of attention. The talent of the designers is high when they define a low number
of Entities.
When Business Analysts describe their Processes, they always like to create new Entities because they
consider that their Business is always very specific.
To limit the number of Entities, the first simple rule is to allow Synonyms.
For example create the Entity “Customer” and allow to call it “Client”.
Or create the Entity “Contract” and allow to call it “Policy”.
The ideal system would allow each company to define which term they want to use for each Entity, and
automatically generate a documentation which only use the preferred term.

03/10/2007
18/28

Page 17

Agreement

Subscriber

Manage Synonyms

Policy

Contract

Division

Department

Direction

Organization

Unit

Client

Customer

Offer

Product

5.11 Manage Homonyms
This is one of the most difficult problems: people often attach different meanings to the same word.
The only help we could provide would be to offer a documentation tool which, while typing,
dynamically recognizes that a word has already been defined and proposes to the writer to dynamically
visualize the definition to check that he really agrees on it.
If the meaning is different then either he changes the term, or he keeps it, which means that the
documentation system must then remember (through indices like in a dictionary), that there exist several
homonyms for the same term, and next time the same term is recognized, several definitions will be
proposed.

03/10/2007
19/28

Page 18

Manage Homonyms

Service

Software

Service

Business

Service

IT

Service

Delivered to

Beneficiary

Reusable

Piece of Software

Offered

To IT USer

Offered

Business

Service

Delivered

Business

Service

Subscribed

Business

Service

5.12 Do not mix inheritance (« is ») and relation (« has »)
This is a current mistake. It comes from the limit of the “is” definition.
Let‟s give an example: when you define the Entity “Employee” because you want to computerize payroll,
you can say “an Employee is a Person”: so “Employee” inherits from “Person”.
Then you want to implement an authorization system and you want your employee to get “Rights”: you
create User id and password in the Employee Entity.
Then you decide that your customers may also access to your information system, and so will get id
and password. But as a Customer is not an Employee you create a Business class which inherits from
Person and you include id and password which do not follow the same rules. As your Employees are
also customers, they must get 2 sets of id-password.
Then you want that your consultants have also access to your information system. But as they are not
employee, you must another time include id and password with different rules…

To avoid this complexity, the good rule is to use relations and not inheritance: a Person (or a Legal
Entity) may play different roles.
The Employee is a Person who has Employee Data and rules.
The IT User is a Person who has id/password data
The Customer is a Person who has Customer data
And the same Person may be together Employee, User and Customer.

03/10/2007
20/28

Page 13

Person

ConsultantCustomer

Person

EmployeeIT User Customer

Inheritance or Relation?

Employee

The same Person may together be

•An IT User

•A Customer

•An employee

5.13 Define relations with «creation process»
To help find Classes, another way is to define the creation process of each main Entity, and look for
related classes.

03/10/2007
21/28

Page 19

Find Entities through creation Process

Salesman Create contract in the Branch

Choose

Product

Product

Select

Offered Services

Offered

Service

Identify

Subscriber

Subscriber

Identify

Beneficiaries

Beneficiary
Subscribed

Service

Salesman Branch

Create

Customer account

Customer

Account

5.14 Do not mix Entities and Business rules
For example, a “condition” is not an Entity, but a Business Rule inside an Entity.

5.15 Split containers and contents
There is often a confusion between a container and a content. For example:

 an Employee (Mrs Smith) and a Position (the Position of Assistant occupied by Mrs Smith)

 a telephone plug and a telephone set

 a hardware and a resource inside the harware

 an Organization Unit and the people inside it

To explain why this distinction is useful, let‟s take the example of “Employee-Position”.
To define who will take care of each Customer, we can use the Employee: it means that in each
Contract, we will create a relation towards “Employee”. If the Employee 1 moves and is replaced by
Employee 2, then many Customer Objects must be modified to replace “Employee 1” by “Employee 2”, a
lot of work.
If we use the Position “Sales People Position”, then there is nothing to modify when the Employee
moves, except the relation from Position to “Employee 1” which then relates to “Employee 2”: much
lighter!

03/10/2007
22/28

Page 20

Container and content

Position Employee

Organization

unit
Organization

actor

Server Resource

inside Server

Plug Telephone set

5.16 Check that existing data find a place in the new Entity Model
This check is easy. If some data cannot be localized into the new Entities, then either this data is
useless, or an Entity was forgotten.

Page 21

Check that each old data find its place

Address

Old Contract record

Subscriber

Contract

Organization

Unit

Product

Contract nb 309763 on Product « travel Assistance » fixed price 200€

subscribed by Mr Smith, covering Mr and Mrs Smith

living at 20 Park Avenue, London, if problem contact Assistance Cell

at 09 87 39 87 63

Beneficiary

03/10/2007
23/28

6 How to transform Entities into the right Classes
Once defined, Entities can be implemented with or without Object Oriented tools which allow to benefit
from mechanisms like inheritance.
The same Entity can be implemented with several Classes. Example: the Entity “Order” is
implemented with the Class “Order header” and the Class “Order Line”. The Class “Order Line” is owned
by the Class “Order Header”. It means that Entities and Classes are not he same: how to go from
Entities to Classes?

6.1 Transform relations carrying information into attributes or
classes

If one Bill is paid by one Payment, there is a single relation from Payment to Bill.
If several bills can be paid by a single payment; then there is a multiple relation from a Payment to the
different Bills.
If the same Bill can be paid by several Payments, then there is a multiple relation from the Bill to the
different payments.
If several Bills are paid by several payments, then a new class must be created which will be called
“payment allocation”. A Payment will be related to as many “payment assignment” that there are bills
paid (partially or not) by this payment.

Page 22

Attributes or Classes

Bill Payment

Bill Payment

Bill Payment
Bill

Payment

100

100

100
60

100

70
30

160

Bill
Bill

100
60

Payment
Payment

70
90Payment

Assignment

Payment

Assignment

Payment

Assignment

Payment

Assignment 20

50

10

80

If relation n-n, create a new Class

6.2 Be careful not to be too generic
When an Entity is difficult to analyze, one easy solution is to define a very general Entity and give it
many different meanings.

Example 1: for the Entity Contract we need several Actors like a Subscriber, a Payer, one or several
Beneficiaries.

03/10/2007
24/28

The Business Analyst may say “well, may be I will forget other Actors related to Contract; so let‟s
implement it with a very general concept: a list of (Person + the Role they play)”.
By doing so, a big advantage is that you can add other Actors if you have forgotten some.
But a big disadvantage is that each time you require a specific Actor, like Subscriber, you must look
successively to all Actors and select the ones which have the Role “Subscriber”.
It also means that consistency will be more difficult to implement. For example, if there is one and only
one Subscriber by Contract:

 it is easy to implement if you define one attribute “Subscriber” which is a relation from Contract to
Person which is a single relation (no multiple values) which cannot be empty

 it is more difficult if you use a list of “Person + Role”: you must then check through the whole list
that there is one and only one Subscriber Role, and the application developer will have to write
code for it.

Page 23

Not too generic

Contract

Role Who

Role Who

Role Who

Role Who

Contract

Subscriber

Decider

Beneficiary

Payer

Person

Role Who

Example 2: for the Product structure, some company prefer to define a single Entity for Product, or
Contract, or Delivered Service, with as many relations as possible. This allows any product structure, but
makes the implementation much more complex, because the developer cannot take advantage of the
Business structure.

Example 3: a Person and a Legal Entity are very different Entities, but some companies like to merge
them in one general concept of “Person” because Contract can be subscribed by a Person or a
Company.

6.3 If a Class becomes too large, split into several Classes
When your Class has too many data or rules, it becomes difficult to manage: then split it into several
Classes.
“Too many” means more than 20 Variables, or 20 Rules, or more than one page of code.

03/10/2007
25/28

6.4 Class model
The Model which represents the classes with the links (inheritance and relation) is called “Class Model”.
He represents the backbone of the application software.
Once this structure exist, it is easy to progressively fill each Class with the right Attributes and Methods.
If the quality of the model is high, it really is easy to add new business functions, new data, new GUI
and it is easy to obtain good performance and reliability.
So the most important objective is to build the application on a high quality model. If some business
functions are lacking in the first version of the application, it will be easy to add them in following
versions.
Ask an expert to certify the Class Model: it seems easy to build it and everyone thinks he is able to do a
good job while experience shows reverse evidence.

6.5 Define precise Relations
A Relation can be more sophisticated than just defining a link from one Class to another one.
For example,

 a Relation can be single (a Person has only one Address) or multiple (a Customer may have several
Contracts)

 a Relation can be strong (Owner): if a parent Entity is deleted, then the son Entity (like Address of
the Person) is also deleted.
 Remark: a Relation between 2 Entities of 2 different Entity Domains is never an Owner

Relation

 a Relation can be versioned or not: an Entity relates to the last available version (for example: we
just need the last valid address) or a precise version of an Entity (a Claim relates to the version of the
Contract when the Claim happened, and not the current version of the Contract)

 Back Relation: when AB relation is defined, when do we define a BA relation?
 Generally, we create a Back Relation if from B, it is necessary to call methods from A (which

is practically, almost always true)
 If AB Is owner : we also automatically create a Back Relation BA

 Transaction: Entities can be strongly linked in a transaction which will group updates on the different
Entities

6.6 How to implement a Role?
The same Person may play different Roles: Decider, Subscriber, Beneficiary, Employee, …
Role is implemented as an Attribute or as a Class. Examples:
The Role Subscriber is implemented as a single Attribute inside the contract whose name is
“Subscriber” and whose Type is „relation to a Person”. We do not need a Class Subscriber, because
there is no Attribute or Method which define a Subscriber other than the one already present in the Class
Person.
The Role Employee is implemented as a Class Employee which as an Attribute whose name is “Person”
and whose Type is “relation to a Person”. We need the Class Employee because there are specific
Employee Attributes like “amount of payroll”, “date of first employment in the Company”, and specific
Rules like “produce an employment certificate”.

03/10/2007
26/28

Page 24

Implement a Role: Attribute or Class

Contract

Subscriber

Decider

Beneficiary

Payer

Person

Beneficiary

Payer

Prederred Service

Means of payment

Account

6.7 Prefer several Classes rather then different Perspectives of the
same Entity

Some Functions do not require all Attributes of a Entity, they just require a subset of them.
This subset is called “Perspective”. The same attribute may belong to different Perspectives.
Ex: for the Entity “Person” you may define administrative Perspective (Name, first Name, birth date,
place of birth, Social Security number) and sales Perspective (Name, first Name, customer segment,
relations with Contracts …).

But implementing the Perspectives is only useful if Classes are big.
Our recommendation is to decompose Entities into several Classes rather than a big Class requiring
different perspectives. The advantages are:

 One Design Concept less

 Inheritance is much more powerful on small Classes than on big Classes.
Perspective is a Core Business concept and not an IT concept.

Example:
For the Entity “Person” we suggest to build different Classes like: “General Informations on the Person”,
“addresses”, “Education”, “Job”, “Assets”, “Family”, “Behaviour”, …

03/10/2007
27/28

7 Approach to help Business Analysts and IT Developers
to reuse the Entity Model

The main principles will be the following:

 Provide an Entity Model (definitions, relations, inheritances, identifiers, Life Cycle and
Versioning) before providing a detailed Data Model.

 Some methodologies make a difference between a Semantic Model and an Entity Design
Model. The Semantic model describes all possible relations between Entities, while the Entity
Design Model only describes the ones which have been implemented for a given Enterprise
System: For example, the Semantic Model may describe “the Client is related to a Place, and the
Place is related to an Address”, while the Entity Design Model only implements “the Client is
related to an Address”. The best solution should be: use both models when you design the Entity
Model, but do not communicate the Semantic Model to Business Analysts and IT
Developers: they must have a simple view of what is reusable: the Design Model.

 Propose
o Training on

 Why it is useful
 What are the Entities
 How to create new complementary Entities

o Business Analysts coaching while they try to reuse same Entities when they define
requirements.

o Developer coaching while Developers transform requirements into Entity Model.
o Certification of an Entity Model

 Offer a tool to
o Present each Entity:

 Belongs to which Entity Domain (hierarchical)
 Name
 Textual definition
 Example
 Synonyms
 Identifier type
 Status and Life Cycle (State Diagram)
 Relations with other Entities
 Inheritance when defined (inheritance will often be defined by the IT Developer

and not the Business Analyst)
o Provide Entity research capacity

 By hierarchy of Entity Domains
 By Alphabetic research
 By navigation between Entities

o Administrate data
 Define who is responsible for each Entity definition or modification
 Define which level (like “External”, “Group”, “Company”, …) of the Global

Enterprise owns data
o Tool options

 Automatic recognition of other Entity Names in the textual definition to be able to
directly access to their definitions

 Capacity to chose a synonym and global change in all texts

03/10/2007
28/28

8 Case Study summaries

8.1 AXA case study
AXA Group defined a list of common Entities necessary for the Decision Domain.
They added Life Entities to non Life Entities already available in the IBM model IIA.

8.2 BNP-Paribas case study
This case study explains why BNPP defined an international business glossary.
It also describes the process to define terms: a first version was too ambitious and was reduced to a
scope which is used with great success today by the different Companies of the group.
It also explains how these concepts were implemented into the BNPP IT System.

8.3 Michelin case study
These last years, projects were focused on Processes rather than Entities because fashionable
methodologies favoured the Process side.
But it was recognized that some difficulties on Enterprise Architecture came from lack of entity
definitions.
A set of 1000 Information Objects have been defined at group level.

8.4 Total case study
At project level, Entities have been defined with UML representation.
From project experience, Total is defining a Group Glossary which will be delivered in 3 languages.

